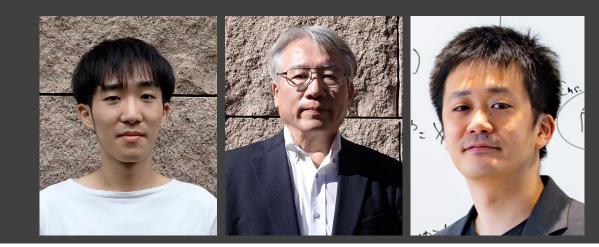
Solving Data Assimilation on Quantum Annealing Machines

Submitted paper info.

Fumitoshi Kawasaki¹, Masanao Ohashi², Shunji Kotsuki³ ¹ Graduate School, Chiba U. ² CEReS, Chiba U., ³ IAAR, Chiba U. (fkawasaki@chiba-u.jp) (Kotsuki *et al.*, 2023, NPGD, doi: 10.5194/npg-2023-16)



This study proposes solving data assimilation on quantum annealing (QA) machines.
 We have conducted experiments with Lorenz-96 and have shown that QA solves data assimilation (DA) faster than conventional approaches.

Introduction

-Variational methods (e.g., 4DVAR) -

- Variational methods (*i.e.*, optimization problems) that iteratively compute the cost function to minimize it are used in NWP around the world.
- Due to the iterations, huge computational resources are consumed for DA in NWP.

-Quantum Annealing (QA) machine -

- Quantum computers have developed rapidly in recent years toward practical use.
- By employing a QA machine, one of the quantum computer types, optimization problems can be solved much faster.

Applying quantum annealing would solve the problem of computational resources in 4DVAR.

Quantum Annealing for Data Assimilation

What's QA ?

QA is an algorithm for solving an optimization problem formulated in QUBO H(b).

$$\mathcal{H}(\mathbf{b}) = \sum_{i < j} a_{ij} q_i q_j + \sum_i u_i q_i \quad (q_i \in \{0, +1\})$$

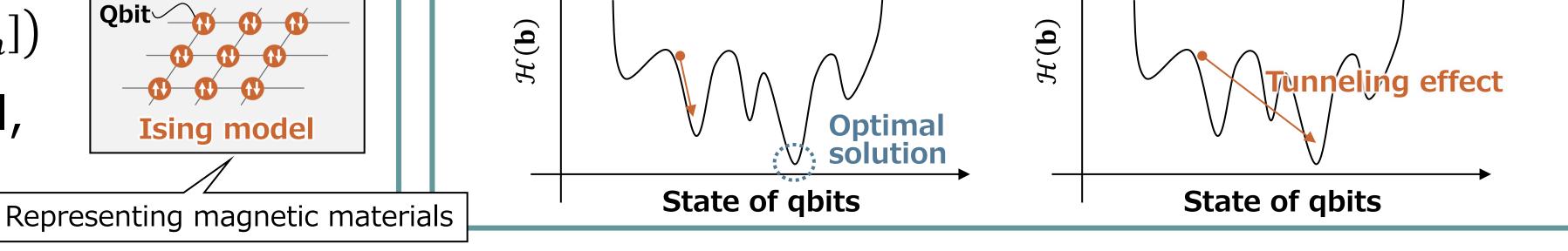
Minimizing the energy of Ising model

-Characteristics of QA

QA can solve an optimization problem much faster by employing the quantum effect (*e.g.*, tunneling effect).
Conventional method (Gradient method)
Quantum Annealing

 $= \mathbf{b}^{\mathrm{T}} \mathbf{A} \mathbf{b} + \mathbf{u}^{\mathrm{T}} \mathbf{b} + \mathbf{C} \qquad (\mathbf{b}^{\mathrm{T}} = [q_0, q_1, \cdots, q_n])$

QUBO is compatible with the Ising model, which can be handled by QA machines.



Reformulation to QUBO

When QA is applied, the cost function needs to be reformulated into QUBO.
The cost function of 4DVAR can be reformulated into QUBO as follows;

$$J(\delta \mathbf{x}_0) = \delta \mathbf{x}_0^T \mathbf{B}^{-1} \delta \mathbf{x}_0 + \left[\mathbf{d}_{1:L}^o - \mathbf{H}_{1:L} \mathbf{M}_{1:L|0} \delta \mathbf{x}_0 \right]^T \mathbf{R}_{1:L}^{-1} \left[\mathbf{d}_{1:L}^o - \mathbf{H}_{1:L} \mathbf{M}_{1:L|0} \delta \mathbf{x}_0 \right] \xrightarrow{\mathbf{Approximation}} \delta \mathbf{x}_0 \mathbf{x}_0 \mathbf{x}_0$$

$$= \delta \mathbf{x}_{0}^{T} \left[\mathbf{B}^{-1} + \widetilde{\mathbf{M}}_{1:L|0}^{T} \mathbf{H}_{1:L}^{T} \mathbf{R}_{1:L}^{-1} \mathbf{H}_{1:L} \widetilde{\mathbf{M}}_{1:L|0} \right] \delta \mathbf{x}_{0} - 2(\mathbf{d}_{1:L}^{o})^{T} \mathbf{R}_{1:L}^{-1} \mathbf{H}_{1:L} \widetilde{\mathbf{M}}_{1:L|0} \delta \mathbf{x}_{0} + C \sum_{i=1}^{i=1}^{i=1} \frac{Binarization}{of \delta \mathbf{x}_{0}}$$

$$\approx \mathcal{H}(\mathbf{b}) = \left(\frac{1}{\alpha}\mathbf{G}\mathbf{b}\right)^{T} \left[\mathbf{B}^{-1} + \widetilde{\mathbf{M}}_{1:L|0}^{T}\mathbf{H}_{1:L}^{-1}\mathbf{H}_{1:L}\mathbf{\widetilde{M}}_{1:L|0}\right] \left(\frac{1}{\alpha}\mathbf{G}\mathbf{b}\right) - 2(\mathbf{d}_{1:L}^{o})^{T}\mathbf{R}_{1:L}^{-1}\mathbf{H}_{1:L}\mathbf{\widetilde{M}}_{1:L|0} \left(\frac{1}{\alpha}\mathbf{G}\mathbf{b}\right) + C$$
$$= \mathbf{b}^{T}\mathbf{A}\mathbf{b} + \mathbf{u}^{T}\mathbf{b} + C \quad \textbf{QUBO !!}$$

$$\mathbf{z}_{1:L} \equiv \begin{bmatrix} \mathbf{Z}_{1} & \cdots & \mathbf{Z}_{L} \end{bmatrix}^{T}$$

$$\mathbf{Z}_{1:L} \equiv \begin{bmatrix} \mathbf{Z}_{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{Z}_{L} \end{bmatrix}$$

$$M_{i|i-1} \begin{pmatrix} M_{i-1|0} \begin{pmatrix} \mathbf{x}_{0}^{f} + \delta \mathbf{x}_{0} \end{pmatrix} + \boldsymbol{\epsilon} \end{pmatrix}$$

$$= M_{i|0} \begin{pmatrix} \mathbf{x}_{0}^{f} + \delta \mathbf{x}_{0} \end{pmatrix} + \mathbf{M}_{i|i-1}\boldsymbol{\epsilon}$$

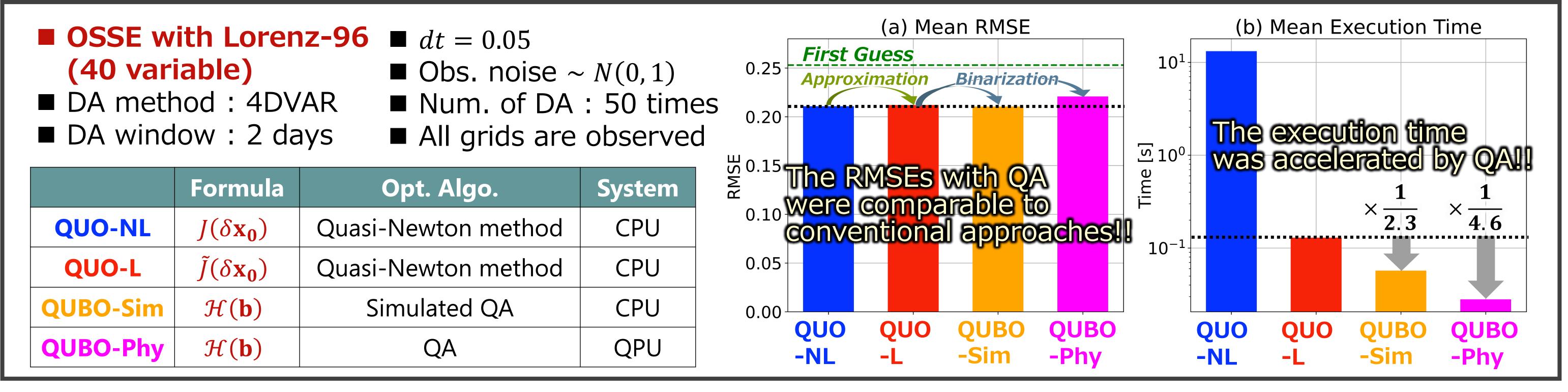
$$M_{i|i-1} \begin{pmatrix} M_{i-1|0} \begin{pmatrix} \mathbf{x}_{0}^{f} \end{pmatrix} + \boldsymbol{\epsilon} \end{pmatrix}$$

$$= M_{i|0} \begin{pmatrix} \mathbf{x}_{0}^{f} \end{pmatrix} + \mathbf{\tilde{M}}_{i|i-1}\boldsymbol{\epsilon}$$

$$\mathbf{G} = \begin{bmatrix} \mathbf{g}^{T} & \mathbf{0} \\ \mathbf{0} & \mathbf{g}^{T} \end{bmatrix}$$

$$\mathbf{g}^{T} = \begin{bmatrix} -2^{Z-1}, 2^{Z-2}, \cdots, 2^{1}, 2^{0} \end{bmatrix}$$

Experiments & Results



ISDA 2023 – 9th International Symposium on Data Assimilation, Bologna, 2023